

Wrocław University of Technology

In-situ monitoring of high doses of radiation

Paweł Knapkiewicz

Faculty of Microsystem Electronics and Photonics Division of Microengineering and Photovoltaics

RESMM 2014 Wrocław, Poland, 13 May 2014

Motivaton

Chernobyl (at left) and Fukushima (at right) nuclear power plants after nuclear accidents.

High radiation > 100 kGy doses in short term.

Motivaton

Scientyfic / industy facility

Radiation level - low, but long-term dose high > 20 kGy.

High radiation doses "measurements" - state of art:

- > 20 kGy only non-direct measurements by:
- alanine dosimeters:
- range of measurement up to 1 MGy
- photoluminescent dosimeters:
- range of measurement up to 1 MGy
- thermoluminescent dosimeters:
- range of measurement up to 1 MGy
- hydrogen pressure dosimeters:
- range of measurement up to 10 MGy

Non-direct measurement

absorbed dose above 20 kGy

classic dosimeter(s)

radiation-proof container

radiation source

transport to the laboratory

Non-direct measurement

Result: several hours to months

Wanted: new method of measurements of high-doses of radiation above 20 kGy

Problem: no sensors

Hydrogen pressure dosimeter - principle of the work

transport

principle using from 1950's

high dose radiation

High Density
Polyethylene
(HDPE)

glass container with HDPE

Laboratory

measurements by Bourdon gauge

Our goal

principle using from 1950's

new MEMS sensor for continues measurements

 H_2 Δp

miniaturization

glass container with HDPE

 $V \sim 100 \text{ cm}^3$

 $V \sim 10 \text{ mm}^3$

Our new MEMS sensor - principle

 p_0 = introductional pressure (after sealing)

Our new MEMS sensor - principle

after irradiation

Irradiated HDPE degrades and releases atomic hydrogen

$$p_1 - p_0 = \Delta p = f (dose)$$

Our new MEMS sensor - principle

"Cascade" membranes sensor

$$p_2 > p_{max}$$

membrane of known mechanical properties discriminates doses

Technical realization Single membrane proportional sensor

Technical realization "Cascade" membranes treshold sensor

scheme not in scale

Fabrication - process

MEMS sensors at a glance

Single membrane sensor

"Cascade" membranes sensor

container with HDPE

Several tens of sensors have been successfully fabricated.

Irradiation

total dose 20 kGy < x < 120 kGy

cap accelerator

sample chuck-holder

high energy electron beam

Results of irradiation

Single membrane proportional sensor sensor before irradiation sensor after irradiation

deflected membrane

25 mm² and 30 µm thick membrane – deflected @ 10 kGy dose

Sensors have been fabricated in MEMSlab facilities at Wrocław University of Technology.

Sensors have been tested in National Center for Nuclear Research in Otwock / Świerk

Data processing toward sensor

Results of irradiation

"Cascade" membranes treshold sensor sensor before irradiation sensor after irradiation

destroyed membrane

25 mm² / 30 µm thick membrane – destroyed at 26.8 kGy dose

Data processing toward sensor

Short interim summary:

- MEMS miniature sensors for detection of high doses of ionizing radiation have been fabricated and tested
- Doses up to 120 kGy have been successfully detected
- High radiation doses 10 120 kGy in situ detection by small MEMS sensor have been shown for the first time
- "Cascade" membrane sensor as dose treshold sensor is ready-to-use!

Single membrane sensor - proportional operation mode

radiation source

safe area

Remote detection

Radar remote detection based on LAAS technology

Modification of EM coupling between resonator and silicon membrane

- High sensitivity to membrane displacement (Air gap : 1μm to 10μm)

Radar remote detection based on LAAS technology

Radar remote detection based on LAAS technology

30GHz Radar prototype

Interrogation distance:

- 3 m (pressure sensor)
- 30m (Antenna loaded with impedance)
 - \rightarrow >> 30m expected

Radar remote detection based on CNRS-LAAS (Toulouse, Fance) technology

MEMS high-dose radiation sensor

DOSIMEMS Project "Passive, wireless MEMS dosimeter for the high radiation dose monitoring", financed by the European Commission under the Seventh Framework Programme FP7, MNT-ERA.NET.

Responsible for development of the sensor technology

DOSIMEMS project- participants

"Cascade" membranes treshold sensor

+ simple eye controll

Single membrane proportional sensor

+ remote controll

Radar

Optical

Monitoring of high doses of radiation after the disaster in harsh environment.

polluted area

Monitoring of high doses of radiation acting on the reactor covers – safety "caps".

working reactors / industry facility

Monitoring of doses coming from nuclear waste disposal.

ground door

High radiation coexist with another treats

- High temperature
- High electromagnetic / magnetic field
- Explosion risk
- Poisonous gases

Sensor and sensing head are:

- resistant against high temperature (up to 300 °C)
- EX standard ready
- wireless

More information in papers

- I. Augustyniak, P. Knapkiewicz, J. Dziuban, M. Olszacki, P. Pons, MEMS high-doses radiation sensor, The 17th International Conference on Solid-State Sensors, Actuators and Microsystems, **Transducres 2013**, Barcelona, 16-20 June 2013, p. 1503-1506, ISBN 978-1-4673-5981-8,
- M. Olszacki, M. Matusiak, I. Augustyniak, P. Knapkiewicz, J. Dziuban, P. Pons and E. Debourg, Measurement of the high gamma radiation dose using the MEMS based dosimeter and radiolisys effect,, 24th Micromechanics and Microsystems Europe Conference, September 1-4, 2013 Hanasaari Finland, p. 33-36,

Acknowgelements

MEMSlab Team

www.memslab.pl

MEMSlab team of Faculty of Microsystem Electronics and Photonics of Wroclaw University of Technology – picture taken in the 14th century Castle, Ryn, Poland